b. Find a binary linear $(5,2)$-code that can correct one error.

Exercise 8.8.14 Find the standard generator matrix G and the parity-check matrix H for each of the following systematic codes:
a. $\{00000,11111\}$ over \mathbb{Z}_{2}.
b. Any systematic $(n, 1)$-code where $n \geq 2$.
c. The code in Exercise 8.8.10(a).
d. The code in Exercise 8.8.10(b).

Exercise 8.8.15 Let \mathbf{c} be a word in F^{n}. Show that $B_{t}(\mathbf{c})=\mathbf{c}+B_{t}(\mathbf{0})$, where we write

$$
\mathbf{c}+B_{t}(\mathbf{0})=\left\{\mathbf{c}+\mathbf{v} \mid \mathbf{v} \text { in } B_{t}(\mathbf{0})\right\}
$$

Exercise 8.8.16 If a (n, k)-code has two standard generator matrices G and G_{1}, show that $G=G_{1}$.

Exercise 8.8.17 Let C be a binary linear n-code (over \mathbb{Z}_{2}). Show that either each word in C has even weight, or half the words in C have even weight and half have odd weight. [Hint: The dimension theorem.]

8.9 An Application to Quadratic Forms

An expression like $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{3}+x_{2} x_{3}$ is called a quadratic form in the variables x_{1}, x_{2}, and x_{3}. In this section we show that new variables y_{1}, y_{2}, and y_{3} can always be found so that the quadratic form, when expressed in terms of the new variables, has no cross terms $y_{1} y_{2}, y_{1} y_{3}$, or $y_{2} y_{3}$. Moreover, we do this for forms involving any finite number of variables using orthogonal diagonalization. This has far-reaching applications; quadratic forms arise in such diverse areas as statistics, physics, the theory of functions of several variables, number theory, and geometry.

Definition 8.21 Quadratic Form

A quadratic form q in the n variables $x_{1}, x_{2}, \ldots, x_{n}$ is a linear combination of terms $x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}$, and cross terms $x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, \ldots$.

If $n=3, q$ has the form

$$
q=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{21} x_{2} x_{1}+a_{13} x_{1} x_{3}+a_{31} x_{3} x_{1}+a_{23} x_{2} x_{3}+a_{32} x_{3} x_{2}
$$

In general

$$
q=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+\cdots+a_{n n} x_{n}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+\cdots
$$

This sum can be written compactly as a matrix product

$$
q=q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is thought of as a column, and $A=\left[a_{i j}\right]$ is a real $n \times n$ matrix. Note that if $i \neq j$, two separate terms $a_{i j} x_{i} x_{j}$ and $a_{j i} x_{j} x_{i}$ are listed, each of which involves $x_{i} x_{j}$, and they can (rather cleverly) be replaced by

$$
\frac{1}{2}\left(a_{i j}+a_{j i}\right) x_{i} x_{j} \quad \text { and } \quad \frac{1}{2}\left(a_{i j}+a_{j i}\right) x_{j} x_{i}
$$

respectively, without altering the quadratic form. Hence there is no loss of generality in assuming that $x_{i} x_{j}$ and $x_{j} x_{i}$ have the same coefficient in the sum for q. In other words, we may assume that A is symmetric.

Example 8.9.1

Write $q=x_{1}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}-x_{1} x_{3}$ in the form $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$, where A is a symmetric 3×3 matrix.
Solution. The cross terms are $2 x_{1} x_{2}=x_{1} x_{2}+x_{2} x_{1}$ and $-x_{1} x_{3}=-\frac{1}{2} x_{1} x_{3}-\frac{1}{2} x_{3} x_{1}$.
Of course, $x_{2} x_{3}$ and $x_{3} x_{2}$ both have coefficient zero, as does x_{2}^{2}. Hence

$$
q(\mathbf{x})=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & -\frac{1}{2} \\
1 & 0 & 0 \\
-\frac{1}{2} & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

is the required form (verify).

We shall assume from now on that all quadratic forms are given by

$$
q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}
$$

where A is symmetric. Given such a form, the problem is to find new variables $y_{1}, y_{2}, \ldots, y_{n}$, related to $x_{1}, x_{2}, \ldots, x_{n}$, with the property that when q is expressed in terms of $y_{1}, y_{2}, \ldots, y_{n}$, there are no cross terms. If we write

$$
\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}
$$

this amounts to asking that $q=\mathbf{y}^{T} D \mathbf{y}$ where D is diagonal. It turns out that this can always be accomplished and, not surprisingly, that D is the matrix obtained when the symmetric matrix A is orthogonally diagonalized. In fact, as Theorem 8.2.2 shows, a matrix P can be found that is orthogonal (that is, $P^{-1}=P^{T}$) and diagonalizes A :

$$
P^{T} A P=D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

The diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the (not necessarily distinct) eigenvalues of A, repeated according to their multiplicities in $c_{A}(x)$, and the columns of P are corresponding (orthonormal) eigenvectors of A. As A is symmetric, the λ_{i} are real by Theorem 5.5.7.

Now define new variables \mathbf{y} by the equations

$$
\mathbf{x}=P \mathbf{y} \quad \text { equivalently } \quad \mathbf{y}=P^{T} \mathbf{x}
$$

Then substitution in $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ gives

$$
q=(P \mathbf{y})^{T} A(P \mathbf{y})=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}=\mathbf{y}^{T} D \mathbf{y}=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

Hence this change of variables produces the desired simplification in q.

Theorem 8.9.1: Diagonalization Theorem

Let $q=\boldsymbol{x}^{T} A \boldsymbol{x}$ be a quadratic form in the variables $x_{1}, x_{2}, \ldots, x_{n}$, where $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and A is a symmetric $n \times n$ matrix. Let P be an orthogonal matrix such that $P^{T} A P$ is diagonal, and
define new variables $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ by

$$
\boldsymbol{x}=P \mathbf{y} \quad \text { equivalently } \quad \boldsymbol{y}=P^{T} \boldsymbol{x}
$$

If q is expressed in terms of these new variables $y_{1}, y_{2}, \ldots, y_{n}$, the result is

$$
q=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A repeated according to their multiplicities.

Let $q=\mathbf{x}^{T} A \mathbf{x}$ be a quadratic form where A is a symmetric matrix and let $\lambda_{1}, \ldots, \lambda_{n}$ be the (real) eigenvalues of A repeated according to their multiplicities. A corresponding set $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\}$ of orthonormal eigenvectors for A is called a set of principal axes for the quadratic form q. (The reason for the name will become clear later.) The orthogonal matrix P in Theorem 8.9.1 is given as $P=\left[\begin{array}{lll}\mathbf{f}_{1} & \cdots & \mathbf{f}_{n}\end{array}\right]$, so the variables X and Y are related by

$$
\mathbf{x}=P \mathbf{y}=\left[\begin{array}{llll}
\mathbf{f}_{1} & \mathbf{f}_{2} & \cdots & \mathbf{f}_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1} \mathbf{f}_{1}+y_{2} \mathbf{f}_{2}+\cdots+y_{n} \mathbf{f}_{n}
$$

Thus the new variables y_{i} are the coefficients when \mathbf{x} is expanded in terms of the orthonormal basis $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right\}$ of \mathbb{R}^{n}. In particular, the coefficients y_{i} are given by $y_{i}=\mathbf{x} \cdot \mathbf{f}_{i}$ by the expansion theorem (Theorem 5.3.6). Hence q itself is easily computed from the eigenvalues λ_{i} and the principal axes \mathbf{f}_{i} :

$$
q=q(\mathbf{x})=\lambda_{1}\left(\mathbf{x} \cdot \mathbf{f}_{1}\right)^{2}+\cdots+\lambda_{n}\left(\mathbf{x} \cdot \mathbf{f}_{n}\right)^{2}
$$

Example 8.9.2

Find new variables y_{1}, y_{2}, y_{3}, and y_{4} such that

$$
q=3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)+2 x_{1} x_{2}-10 x_{1} x_{3}+10 x_{1} x_{4}+10 x_{2} x_{3}-10 x_{2} x_{4}+2 x_{3} x_{4}
$$

has diagonal form, and find the corresponding principal axes.
Solution. The form can be written as $q=\mathbf{x}^{T} A \mathbf{x}$, where

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{rrrr}
3 & 1 & -5 & 5 \\
1 & 3 & 5 & -5 \\
-5 & 5 & 3 & 1 \\
5 & -5 & 1 & 3
\end{array}\right]
$$

A routine calculation yields

$$
c_{A}(x)=\operatorname{det}(x I-A)=(x-12)(x+8)(x-4)^{2}
$$

so the eigenvalues are $\lambda_{1}=12, \lambda_{2}=-8$, and $\lambda_{3}=\lambda_{4}=4$. Corresponding orthonormal
eigenvectors are the principal axes:

$$
\mathbf{f}_{1}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right] \quad \mathbf{f}_{2}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right] \quad \mathbf{f}_{3}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{f}_{4}=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right]
$$

The matrix

$$
P=\left[\begin{array}{llll}
\mathbf{f}_{1} & \mathbf{f}_{2} & \mathbf{f}_{3} & \mathbf{f}_{4}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

is thus orthogonal, and $P^{-1} A P=P^{T} A P$ is diagonal. Hence the new variables \mathbf{y} and the old variables \mathbf{x} are related by $\mathbf{y}=P^{T} \mathbf{x}$ and $\mathbf{x}=P \mathbf{y}$. Explicitly,

$$
\begin{array}{ll}
y_{1}=\frac{1}{2}\left(x_{1}-x_{2}-x_{3}+x_{4}\right) & x_{1}=\frac{1}{2}\left(y_{1}+y_{2}+y_{3}+y_{4}\right) \\
y_{2}=\frac{1}{2}\left(x_{1}-x_{2}+x_{3}-x_{4}\right) & x_{2}=\frac{1}{2}\left(-y_{1}-y_{2}+y_{3}+y_{4}\right) \\
y_{3}=\frac{1}{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) & x_{3}=\frac{1}{2}\left(-y_{1}+y_{2}+y_{3}-y_{4}\right) \\
y_{4}=\frac{1}{2}\left(x_{1}+x_{2}-x_{3}-x_{4}\right) & x_{4}=\frac{1}{2}\left(y_{1}-y_{2}+y_{3}-y_{4}\right)
\end{array}
$$

If these x_{i} are substituted in the original expression for q, the result is

$$
q=12 y_{1}^{2}-8 y_{2}^{2}+4 y_{3}^{2}+4 y_{4}^{2}
$$

This is the required diagonal form.

It is instructive to look at the case of quadratic forms in two variables x_{1} and x_{2}. Then the principal axes can always be found by rotating the x_{1} and x_{2} axes counterclockwise about the origin through an angle θ. This rotation is a linear transformation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, and it is shown in Theorem 2.6.4 that R_{θ} has matrix $P=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. If $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ denotes the standard basis of \mathbb{R}^{2}, the rotation produces a new basis $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ given by

$$
\mathbf{f}_{1}=R_{\theta}\left(\mathbf{e}_{1}\right)=\left[\begin{array}{c}
\cos \theta \tag{8.7}\\
\sin \theta
\end{array}\right] \quad \text { and } \quad \mathbf{f}_{2}=R_{\theta}\left(\mathbf{e}_{2}\right)=\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

Given a point $\mathbf{p}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}$ in the original system, let y_{1} and y_{2} be the coordinates of \mathbf{p} in the new system (see the diagram). That is,

$$
\left[\begin{array}{l}
x_{1} \tag{8.8}\\
x_{2}
\end{array}\right]=\mathbf{p}=y_{1} \mathbf{f}_{1}+y_{2} \mathbf{f}_{2}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Writing $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, this reads $\mathbf{x}=P \mathbf{y}$ so, since P is orthogonal, this is the change of variables formula for the rotation as in Theorem 8.9.1.

If $r \neq 0 \neq s$, the graph of the equation $r x_{1}^{2}+s x_{2}^{2}=1$ is called an ellipse if $r s>0$ and a hyperbola if $r s<0$. More generally, given a quadratic form

$$
q=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2} \quad \text { where not all of } a, b, \text { and } c \text { are zero }
$$

the graph of the equation $q=1$ is called a conic. We can now completely describe this graph. There are two special cases which we leave to the reader.

1. If exactly one of a and c is zero, then the graph of $q=1$ is a parabola.

So we assume that $a \neq 0$ and $c \neq 0$. In this case, the description depends on the quantity $b^{2}-4 a c$, called the discriminant of the quadratic form q.
2. If $b^{2}-4 a c=0$, then either both $a \geq 0$ and $c \geq 0$, or both $a \leq 0$ and $c \leq 0$.

Hence $q=\left(\sqrt{a} x_{1}+\sqrt{c} x_{2}\right)^{2}$ or $q=\left(\sqrt{-a} x_{1}+\sqrt{-c} x_{2}\right)^{2}$, so the graph of $q=1$ is a pair of straight lines in either case.

So we also assume that $b^{2}-4 a c \neq 0$. But then the next theorem asserts that there exists a rotation of the plane about the origin which transforms the equation $a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}=1$ into either an ellipse or a hyperbola, and the theorem also provides a simple way to decide which conic it is.

Theorem 8.9.2

Consider the quadratic form $q=a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}$ where a, c, and $b^{2}-4 a c$ are all nonzero.

1. There is a counterclockwise rotation of the coordinate axes about the origin such that, in the new coordinate system, q has no cross term.
2. The graph of the equation

$$
a x_{1}^{2}+b x_{1} x_{2}+c x_{2}^{2}=1
$$

is an ellipse if $b^{2}-4 a c<0$ and an hyperbola if $b^{2}-4 a c>0$.

Proof. If $b=0, q$ already has no cross term and (1) and (2) are clear. So assume $b \neq 0$. The matrix $A=\left[\begin{array}{cc}a & \frac{1}{2} b \\ \frac{1}{2} b & c\end{array}\right]$ of q has characteristic polynomial $c_{A}(x)=x^{2}-(a+c) x-\frac{1}{4}\left(b^{2}-4 a c\right)$. If we write $d=\sqrt{b^{2}+(a-c)^{2}}$ for convenience; then the quadratic formula gives the eigenvalues

$$
\lambda_{1}=\frac{1}{2}[a+c-d] \quad \text { and } \quad \lambda_{2}=\frac{1}{2}[a+c+d]
$$

with corresponding principal axes

$$
\begin{aligned}
& \mathbf{f}_{1}=\frac{1}{\sqrt{b^{2}+(a-c-d)^{2}}}\left[\begin{array}{c}
a-c-d \\
b
\end{array}\right] \quad \text { and } \\
& \mathbf{f}_{2}=\frac{1}{\sqrt{b^{2}+(a-c-d)^{2}}}\left[\begin{array}{c}
-b \\
a-c-d
\end{array}\right]
\end{aligned}
$$

as the reader can verify. These agree with equation (8.7) above if θ is an angle such that

$$
\cos \theta=\frac{a-c-d}{\sqrt{b^{2}+(a-c-d)^{2}}} \quad \text { and } \quad \sin \theta=\frac{b}{\sqrt{b^{2}+(a-c-d)^{2}}}
$$

Then $P=\left[\begin{array}{ll}\mathbf{f}_{1} & \mathbf{f}_{2}\end{array}\right]=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ diagonalizes A and equation (8.8) becomes the formula $\mathbf{x}=P \mathbf{y}$ in Theorem 8.9.1. This proves (1).

Finally, A is similar to $\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ so $\lambda_{1} \lambda_{2}=\operatorname{det} A=\frac{1}{4}\left(4 a c-b^{2}\right)$. Hence the graph of $\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}=1$ is an ellipse if $b^{2}<4 a c$ and an hyperbola if $b^{2}>4 a c$. This proves (2).

Example 8.9.3

Consider the equation $x^{2}+x y+y^{2}=1$. Find a rotation so that the equation has no cross term.

Solution.

Here $a=b=c=1$ in the notation of Theorem 8.9.2, so $\cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$. Hence $\theta=\frac{3 \pi}{4}$ will do it. The new variables are $y_{1}=\frac{1}{\sqrt{2}}\left(x_{2}-x_{1}\right)$ and $y_{2}=\frac{-1}{\sqrt{2}}\left(x_{2}+x_{1}\right)$ by (8.8), and the equation becomes $y_{1}^{2}+3 y_{2}^{2}=2$. The angle θ has been chosen such that the new y_{1} and y_{2} axes are the axes of symmetry of the ellipse (see the diagram). The eigenvectors $\mathbf{f}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ and $\mathbf{f}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ point along these axes of symmetry, and this is the reason for the name principal axes.

The determinant of any orthogonal matrix P is either 1 or -1 (because $P P^{T}=I$). The orthogonal matrices $\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ arising from rotations all have determinant 1. More generally, given any quadratic form $q=\mathbf{x}^{T} A \mathbf{x}$, the orthogonal matrix P such that $P^{T} A P$ is diagonal can always be chosen so that $\operatorname{det} P=1$ by interchanging two eigenvalues (and hence the corresponding columns of P). It is shown in Theorem 10.4.4 that orthogonal 2×2 matrices with determinant 1 correspond to rotations. Similarly, it can be shown that orthogonal 3×3 matrices with determinant 1 correspond to rotations about a line through the origin. This extends Theorem 8.9.2: Every quadratic form in two or three variables can be diagonalized by a rotation of the coordinate system.

Congruence

We return to the study of quadratic forms in general.

Theorem 8.9.3

If $q(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}$ is a quadratic form given by a symmetric matrix A, then A is uniquely determined by q.

Proof. Let $q(\mathbf{x})=\mathbf{x}^{T} B \mathbf{x}$ for all \mathbf{x} where $B^{T}=B$. If $C=A-B$, then $C^{T}=C$ and $\mathbf{x}^{T} C \mathbf{x}=0$ for all \mathbf{x}. We must show that $C=0$. Given \mathbf{y} in \mathbb{R}^{n},

$$
\begin{aligned}
0=(\mathbf{x}+\mathbf{y})^{T} C(\mathbf{x}+\mathbf{y}) & =\mathbf{x}^{T} C \mathbf{x}+\mathbf{x}^{T} C \mathbf{y}+\mathbf{y}^{T} C \mathbf{x}+\mathbf{y}^{T} C \mathbf{y} \\
& =\mathbf{x}^{T} C \mathbf{y}+\mathbf{y}^{T} C \mathbf{x}
\end{aligned}
$$

But $\mathbf{y}^{T} C \mathbf{x}=\left(\mathbf{x}^{T} C \mathbf{y}\right)^{T}=\mathbf{x}^{T} C \mathbf{y}$ (it is 1×1). Hence $\mathbf{x}^{T} C \mathbf{y}=0$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^{n}. If \mathbf{e}_{j} is column j of I_{n}, then the (i, j)-entry of C is $\mathbf{e}_{i}^{T} C \mathbf{e}_{j}=0$. Thus $C=0$.
Hence we can speak of the symmetric matrix of a quadratic form.
On the other hand, a quadratic form q in variables x_{i} can be written in several ways as a linear combination of squares of new variables, even if the new variables are required to be linear combinations of the x_{i}. For example, if $q=2 x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}$ then

$$
q=2\left(x_{1}-x_{2}\right)^{2}-x_{2}^{2} \quad \text { and } \quad q=-2 x_{1}^{2}+\left(2 x_{1}-x_{2}\right)^{2}
$$

The question arises: How are these changes of variables related, and what properties do they share? To investigate this, we need a new concept.

Let a quadratic form $q=q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be given in terms of variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. If the new variables $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ are to be linear combinations of the x_{i}, then $\mathbf{y}=A \mathbf{x}$ for some $n \times n$ matrix A. Moreover, since we want to be able to solve for the x_{i} in terms of the y_{i}, we ask that the matrix A be invertible. Hence suppose U is an invertible matrix and that the new variables \mathbf{y} are given by

$$
\mathbf{y}=U^{-1} \mathbf{x}, \quad \text { equivalently } \mathbf{x}=U \mathbf{y}
$$

In terms of these new variables, q takes the form

$$
q=q(\mathbf{x})=(U \mathbf{y})^{T} A(U \mathbf{y})=\mathbf{y}^{T}\left(U^{T} A U\right) \mathbf{y}
$$

That is, q has matrix $U^{T} A U$ with respect to the new variables \mathbf{y}. Hence, to study changes of variables in quadratic forms, we study the following relationship on matrices: Two $n \times n$ matrices A and B are called congruent, written $A \stackrel{c}{\sim} B$, if $B=U^{T} A U$ for some invertible matrix U. Here are some properties of congruence:

1. $A \stackrel{c}{\sim} A$ for all A.
2. If $A \stackrel{c}{\sim} B$, then $B \stackrel{c}{\sim} A$.
3. If $A \stackrel{c}{\sim} B$ and $B \stackrel{c}{\sim} C$, then $A \stackrel{c}{\sim} C$.
4. If $A \stackrel{c}{\sim} B$, then A is symmetric if and only if B is symmetric.
5. If $A \stackrel{\mathcal{C}}{\sim} B$, then $\operatorname{rank} A=\operatorname{rank} B$.

The converse to (5) can fail even for symmetric matrices.

Example 8.9.4

The symmetric matrices $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$ have the same rank but are not congruent. Indeed, if $A \stackrel{c}{\sim} B$, an invertible matrix U exists such that $B=U^{T} A U=U^{T} U$. But then $-1=\operatorname{det} B=(\operatorname{det} U)^{2}$, a contradiction.

The key distinction between A and B in Example 8.9.4 is that A has two positive eigenvalues (counting multiplicities) whereas B has only one.

Theorem 8.9.4: Sylvester's Law of Inertia

If $A \stackrel{c}{\sim} B$, then A and B have the same number of positive eigenvalues, counting multiplicities.

The proof is given at the end of this section.
The index of a symmetric matrix A is the number of positive eigenvalues of A. If $q=q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form, the index and rank of q are defined to be, respectively, the index and rank of the matrix A. As we saw before, if the variables expressing a quadratic form q are changed, the new matrix is congruent to the old one. Hence the index and rank depend only on q and not on the way it is expressed.

Now let $q=q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be any quadratic form in n variables, of index k and rank r, where A is symmetric. We claim that new variables \mathbf{z} can be found so that q is completely diagonalized-that is,

$$
q(\mathbf{z})=z_{1}^{2}+\cdots+z_{k}^{2}-z_{k+1}^{2}-\cdots-z_{r}^{2}
$$

If $k \leq r \leq n$, let $D_{n}(k, r)$ denote the $n \times n$ diagonal matrix whose main diagonal consists of k ones, followed by $r-k$ minus ones, followed by $n-r$ zeros. Then we seek new variables \mathbf{z} such that

$$
q(\mathbf{z})=\mathbf{z}^{T} D_{n}(k, r) \mathbf{z}
$$

To determine \mathbf{z}, first diagonalize A as follows: Find an orthogonal matrix P_{0} such that

$$
P_{0}^{T} A P_{0}=D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, 0, \ldots, 0\right)
$$

is diagonal with the nonzero eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ of A on the main diagonal (followed by $n-r$ zeros). By reordering the columns of P_{0}, if necessary, we may assume that $\lambda_{1}, \ldots, \lambda_{k}$ are positive and $\lambda_{k+1}, \ldots, \lambda_{r}$ are negative. This being the case, let D_{0} be the $n \times n$ diagonal matrix

$$
D_{0}=\operatorname{diag}\left(\frac{1}{\sqrt{\lambda_{1}}}, \ldots, \frac{1}{\sqrt{\lambda_{k}}}, \frac{1}{\sqrt{-\lambda_{k+1}}}, \ldots, \frac{1}{\sqrt{-\lambda_{r}}}, 1, \ldots, 1\right)
$$

Then $D_{0}^{T} D D_{0}=D_{n}(k, r)$, so if new variables \mathbf{z} are given by $\mathbf{x}=\left(P_{0} D_{0}\right) \mathbf{z}$, we obtain

$$
q(\mathbf{z})=\mathbf{z}^{T} D_{n}(k, r) \mathbf{z}=z_{1}^{2}+\cdots+z_{k}^{2}-z_{k+1}^{2}-\cdots-z_{r}^{2}
$$

as required. Note that the change-of-variables matrix $P_{0} D_{0}$ from \mathbf{z} to \mathbf{x} has orthogonal columns (in fact, scalar multiples of the columns of P_{0}).

Example 8.9.5

Completely diagonalize the quadratic form q in Example 8.9.2 and find the index and rank.
Solution. In the notation of Example 8.9.2, the eigenvalues of the matrix A of q are 12, $-8,4,4$; so the index is 3 and the rank is 4 . Moreover, the corresponding orthogonal eigenvectors are $\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}$ (see Example 8.9.2), and \mathbf{f}_{4}. Hence $P_{0}=\left[\begin{array}{llll}\mathbf{f}_{1} & \mathbf{f}_{3} & \mathbf{f}_{4} & \mathbf{f}_{2}\end{array}\right]$ is orthogonal and

$$
P_{0}^{T} A P_{0}=\operatorname{diag}(12,4,4,-8)
$$

As before, take $D_{0}=\operatorname{diag}\left(\frac{1}{\sqrt{12}}, \frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{8}}\right)$ and define the new variables \mathbf{z} by $\mathbf{x}=\left(P_{0} D_{0}\right) \mathbf{z}$. Hence the new variables are given by $\mathbf{z}=D_{0}^{-1} P_{0}^{T} \mathbf{x}$. The result is

$$
\begin{aligned}
& z_{1}=\sqrt{3}\left(x_{1}-x_{2}-x_{3}+x_{4}\right) \\
& z_{2}=x_{1}+x_{2}+x_{3}+x_{4} \\
& z_{3}=x_{1}+x_{2}-x_{3}-x_{4} \\
& z_{4}=\sqrt{2}\left(x_{1}-x_{2}+x_{3}-x_{4}\right)
\end{aligned}
$$

This discussion gives the following information about symmetric matrices.

Theorem 8.9.5

Let A and B be symmetric $n \times n$ matrices, and let $0 \leq k \leq r \leq n$.

1. A has index k and rank r if and only if $A \stackrel{c}{\sim} D_{n}(k, r)$.
2. $A \stackrel{c}{\sim} B$ if and only if they have the same rank and index.

Proof.

1. If A has index k and rank r, take $U=P_{0} D_{0}$ where P_{0} and D_{0} are as described prior to Example 8.9.5. Then $U^{T} A U=D_{n}(k, r)$. The converse is true because $D_{n}(k, r)$ has index k and rank r (using Theorem 8.9.4).
2. If A and B both have index k and rank r, then $A \stackrel{\mathcal{c}}{\sim} D_{n}(k, r) \stackrel{c}{\sim} B$ by (1). The converse was given earlier.

Proof of Theorem 8.9.4.

By Theorem 8.9.1, $A \stackrel{c}{\sim} D_{1}$ and $B \stackrel{c}{\sim} D_{2}$ where D_{1} and D_{2} are diagonal and have the same eigenvalues as A and B, respectively. We have $D_{1} \stackrel{c}{\sim} D_{2}$, (because $A \stackrel{c}{\sim} B$), so we may assume that A and B are both diagonal. Consider the quadratic form $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$. If A has k positive eigenvalues, q has the form

$$
q(\mathbf{x})=a_{1} x_{1}^{2}+\cdots+a_{k} x_{k}^{2}-a_{k+1} x_{k+1}^{2}-\cdots-a_{r} x_{r}^{2}, \quad a_{i}>0
$$

where $r=\operatorname{rank} A=\operatorname{rank} B$. The subspace $W_{1}=\left\{\mathbf{x} \mid x_{k+1}=\cdots=x_{r}=0\right\}$ of \mathbb{R}^{n} has dimension $n-r+k$ and satisfies $q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$ in W_{1}.

On the other hand, if $B=U^{T} A U$, define new variables \mathbf{y} by $\mathbf{x}=U \mathbf{y}$. If B has k^{\prime} positive eigenvalues, q has the form

$$
q(\mathbf{x})=b_{1} y_{1}^{2}+\cdots+b_{k^{\prime}} y_{k^{\prime}}^{2}-b_{k^{\prime}+1} y_{k^{\prime}+1}^{2}-\cdots-b_{r} y_{r}^{2}, \quad b_{i}>0
$$

Let $\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}$ denote the columns of U. They are a basis of \mathbb{R}^{n} and

$$
\mathbf{x}=U \mathbf{y}=\left[\begin{array}{lll}
\mathbf{f}_{1} & \cdots & \mathbf{f}_{n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]=y_{1} \mathbf{f}_{1}+\cdots+y_{n} \mathbf{f}_{n}
$$

Hence the subspace $W_{2}=\operatorname{span}\left\{\mathbf{f}_{k^{\prime}+1}, \ldots, \mathbf{f}_{r}\right\}$ satisfies $q(\mathbf{x})<0$ for all $\mathbf{x} \neq \mathbf{0}$ in W_{2}. Note $\operatorname{dim} W_{2}=r-k^{\prime}$. It follows that W_{1} and W_{2} have only the zero vector in common. Hence, if B_{1} and B_{2} are bases of W_{1} and W_{2}, respectively, then (Exercise 6.3.33) $B_{1} \cup B_{2}$ is an independent set of $(n-r+k)+\left(r-k^{\prime}\right)=n+k-k^{\prime}$ vectors in \mathbb{R}^{n}. This implies that $k \leq k^{\prime}$, and a similar argument shows $k^{\prime} \leq k$.

Exercises for 8.9

Exercise 8.9.1 In each case, find a symmetric matrix A such that $q=\mathbf{x}^{T} B \mathbf{x}$ takes the form $q=\mathbf{x}^{T} A \mathbf{x}$.
a. $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
b. $\left[\begin{array}{rr}1 & 1 \\ -1 & 2\end{array}\right]$
c. $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
d. $\left[\begin{array}{rrr}1 & 2 & -1 \\ 4 & 1 & 0 \\ 5 & -2 & 3\end{array}\right]$
d. $q=7 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+8 x_{1} x_{2}+8 x_{1} x_{3}-16 x_{2} x_{3}$
e. $q=2\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1} x_{2}+x_{1} x_{3}-x_{2} x_{3}\right)$
f. $q=5 x_{1}^{2}+8 x_{2}^{2}+5 x_{3}^{2}-4\left(x_{1} x_{2}+2 x_{1} x_{3}+x_{2} x_{3}\right)$
g. $q=x_{1}^{2}-x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}$
h. $q=x_{1}^{2}+x_{3}^{2}-2 x_{1} x_{2}+2 x_{2} x_{3}$

Exercise 8.9.2 In each case, find a change of variables that will diagonalize the quadratic form q. Determine the index and rank of q.
a. $q=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$
b. $q=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}$
c. $q=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-4\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)$

Exercise 8.9.3 For each of the following, write the equation in terms of new variables so that it is in standard position, and identify the curve.
a. $x y=1$
b. $3 x^{2}-4 x y=2$
c. $6 x^{2}+6 x y-2 y^{2}=5$
d. $2 x^{2}+4 x y+5 y^{2}=1$

Exercise 8.9.4 Consider the equation $a x^{2}+b x y+c y^{2}=$ d, where $b \neq 0$. Introduce new variables x_{1} and y_{1} by rotating the axes counterclockwise through an angle θ. Show that the resulting equation has no $x_{1} y_{1}$-term if θ is given by

$$
\begin{aligned}
& \cos 2 \theta=\frac{a-c}{\sqrt{b^{2}+(a-c)^{2}}} \\
& \sin 2 \theta=\frac{b}{\sqrt{b^{2}+(a-c)^{2}}}
\end{aligned}
$$

[Hint: Use equation (8.8) preceding Theorem 8.9.2 to get x and y in terms of x_{1} and y_{1}, and substitute.]
Exercise 8.9.5 Prove properties (1)-(5) preceding Example 8.9.4.

Exercise 8.9.6 If $A \stackrel{c}{\sim} B$ show that A is invertible if and only if B is invertible.
Exercise 8.9.7 If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}$ is a column of variables, $A=A^{T}$ is $n \times n, B$ is $1 \times n$, and c is a constant, $\mathbf{x}^{T} A \mathbf{x}+B \mathbf{x}=c$ is called a quadratic equation in the variables x_{i}.
a. Show that new variables y_{1}, \ldots, y_{n} can be found such that the equation takes the form

$$
\lambda_{1} y_{1}^{2}+\cdots+\lambda_{r} y_{r}^{2}+k_{1} y_{1}+\cdots+k_{n} y_{n}=c
$$

b. Put $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-4 x_{1} x_{3}+5 x_{1}-6 x_{3}=7$ in this form and find variables y_{1}, y_{2}, y_{3} as in (a).

Exercise 8.9.8 Given a symmetric matrix A, define $q_{A}(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$. Show that $B \stackrel{\mathcal{C}}{\sim} A$ if and only if B is symmetric and there is an invertible matrix U such that $q_{B}(\mathbf{x})=q_{A}(U \mathbf{x})$ for all \mathbf{x}. [Hint: Theorem 8.9.3.]
Exercise 8.9.9 Let $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}$ be a quadratic form where $A=A^{T}$.
a. Show that $q(\mathbf{x})>0$ for all $\mathbf{x} \neq \mathbf{0}$, if and only if A is positive definite (all eigenvalues are positive). In this case, q is called positive definite.
b. Show that new variables \mathbf{y} can be found such that $q=\|\mathbf{y}\|^{2}$ and $\mathbf{y}=U \mathbf{x}$ where U is upper triangular with positive diagonal entries. [Hint: Theorem 8.3.3.]

Exercise 8.9.10 A bilinear form β on \mathbb{R}^{n} is a function that assigns to every pair \mathbf{x}, \mathbf{y} of columns in \mathbb{R}^{n} a number $\beta(\mathbf{x}, \mathbf{y})$ in such a way that

$$
\begin{aligned}
& \beta(r \mathbf{x}+s \mathbf{y}, \mathbf{z})=r \beta(\mathbf{x}, \mathbf{z})+s \beta(\mathbf{y}, \mathbf{z}) \\
& \beta(\mathbf{x}, r \mathbf{y}+s \mathbf{z})=r \beta(\mathbf{x}, \mathbf{z})+s \beta(\mathbf{x}, \mathbf{z})
\end{aligned}
$$

for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^{n} and r, s in \mathbb{R}. If $\beta(\mathbf{x}, \mathbf{y})=\beta(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y}, \beta$ is called symmetric.
a. If β is a bilinear form, show that an $n \times n$ matrix A exists such that $\beta(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} A \mathbf{y}$ for all \mathbf{x}, \mathbf{y}.
b. Show that A is uniquely determined by β.
c. Show that β is symmetric if and only if $A=A^{T}$.

8.10 An Application to Constrained Optimization

It is a frequent occurrence in applications that a function $q=q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of n variables, called an objective function, is to be made as large or as small as possible among all vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ lying in a certain region of \mathbb{R}^{n} called the feasible region. A wide variety of objective functions q arise in practice; our primary concern here is to examine one important situation where q is a quadratic form. The next example gives some indication of how such problems arise.

