one error.

Exercise 8.8.14 Find the standard generator matrix G and the parity-check matrix H for each of the following systematic codes:

- a. $\{00000, 11111\}$ over \mathbb{Z}_2 .
- b. Any systematic (n, 1)-code where $n \ge 2$.
- c. The code in Exercise 8.8.10(a).
- d. The code in Exercise 8.8.10(b).

b. Find a binary linear (5, 2)-code that can correct **Exercise 8.8.15** Let c be a word in F^n . Show that $B_t(\mathbf{c}) = \mathbf{c} + B_t(\mathbf{0})$, where we write

$$\mathbf{c} + B_t(\mathbf{0}) = \{\mathbf{c} + \mathbf{v} \mid \mathbf{v} \text{ in } B_t(\mathbf{0})\}$$

Exercise 8.8.16 If a (n, k)-code has two standard generator matrices G and G_1 , show that $G = G_1$.

Exercise 8.8.17 Let *C* be a binary linear *n*-code (over \mathbb{Z}_2). Show that either each word in *C* has even weight, or half the words in C have even weight and half have odd weight. [*Hint*: The dimension theorem.]

8.9 An Application to Quadratic Forms

An expression like $x_1^2 + x_2^2 + x_3^2 - 2x_1x_3 + x_2x_3$ is called a quadratic form in the variables x_1 , x_2 , and x_3 . In this section we show that new variables y_1 , y_2 , and y_3 can always be found so that the quadratic form, when expressed in terms of the new variables, has no cross terms y_1y_2 , y_1y_3 , or y_2y_3 . Moreover, we do this for forms involving any finite number of variables using orthogonal diagonalization. This has far-reaching applications; quadratic forms arise in such diverse areas as statistics, physics, the theory of functions of several variables, number theory, and geometry.

Definition 8.21 Quadratic Form

A quadratic form q in the n variables x_1, x_2, \ldots, x_n is a linear combination of terms $x_1^2, x_2^2, \ldots, x_n^2$, and cross terms $x_1x_2, x_1x_3, x_2x_3, \ldots$.

If n = 3, q has the form

$$q = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{13}x_1x_3 + a_{31}x_3x_1 + a_{23}x_2x_3 + a_{32}x_3x_2$$

In general

$$q = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + \dots$$

This sum can be written compactly as a matrix product

$$q = q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

where $\mathbf{x} = (x_1, x_2, ..., x_n)$ is thought of as a column, and $A = [a_{ij}]$ is a real $n \times n$ matrix. Note that if $i \neq j$, two separate terms $a_{ij}x_ix_j$ and $a_{ji}x_jx_i$ are listed, each of which involves x_ix_j , and they can (rather cleverly) be replaced by

$$\frac{1}{2}(a_{ij}+a_{ji})x_ix_j$$
 and $\frac{1}{2}(a_{ij}+a_{ji})x_jx_i$

respectively, without altering the quadratic form. Hence there is no loss of generality in assuming that $x_i x_j$ and $x_i x_i$ have the same coefficient in the sum for q. In other words, we may assume that A is symmetric.

Example 8.9.1

Write $q = x_1^2 + 3x_3^2 + 2x_1x_2 - x_1x_3$ in the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$, where A is a symmetric 3×3 matrix.

Solution. The cross terms are $2x_1x_2 = x_1x_2 + x_2x_1$ and $-x_1x_3 = -\frac{1}{2}x_1x_3 - \frac{1}{2}x_3x_1$. Of course, x_2x_3 and x_3x_2 both have coefficient zero, as does x_2^2 . Hence

$$q(\mathbf{x}) = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -\frac{1}{2} \\ 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

is the required form (verify).

We shall assume from now on that all quadratic forms are given by

$$q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$

where A is symmetric. Given such a form, the problem is to find new variables y_1, y_2, \ldots, y_n , related to x_1, x_2, \ldots, x_n , with the property that when q is expressed in terms of y_1, y_2, \ldots, y_n , there are no cross terms. If we write

$$\mathbf{y} = (y_1, y_2, \ldots, y_n)^T$$

this amounts to asking that $q = \mathbf{y}^T D \mathbf{y}$ where *D* is diagonal. It turns out that this can always be accomplished and, not surprisingly, that *D* is the matrix obtained when the symmetric matrix *A* is orthogonally diagonalized. In fact, as Theorem 8.2.2 shows, a matrix *P* can be found that is orthogonal (that is, $P^{-1} = P^T$) and diagonalizes *A*:

$$P^{T}AP = D = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}$$

The diagonal entries $\lambda_1, \lambda_2, ..., \lambda_n$ are the (not necessarily distinct) eigenvalues of *A*, repeated according to their multiplicities in $c_A(x)$, and the columns of *P* are corresponding (orthonormal) eigenvectors of *A*. As *A* is symmetric, the λ_i are real by Theorem 5.5.7.

Now define new variables y by the equations

$$\mathbf{x} = P\mathbf{y}$$
 equivalently $\mathbf{y} = P^T\mathbf{x}$

Then substitution in $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ gives

$$q = (P\mathbf{y})^T A(P\mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

Hence this change of variables produces the desired simplification in q.

Theorem 8.9.1: Diagonalization Theorem

Let $q = \mathbf{x}^T A \mathbf{x}$ be a quadratic form in the variables $x_1, x_2, ..., x_n$, where $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and *A* is a symmetric $n \times n$ matrix. Let *P* be an orthogonal matrix such that $P^T A P$ is diagonal, and

define new variables $\mathbf{y} = (y_1, y_2, \dots, y_n)^T$ by

 $\mathbf{x} = P\mathbf{y}$ equivalently $\mathbf{y} = P^T \mathbf{x}$

If q is expressed in terms of these new variables y_1, y_2, \ldots, y_n , the result is

$$q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A repeated according to their multiplicities.

Let $q = \mathbf{x}^T A \mathbf{x}$ be a quadratic form where *A* is a symmetric matrix and let $\lambda_1, \ldots, \lambda_n$ be the (real) eigenvalues of *A* repeated according to their multiplicities. A corresponding set { $\mathbf{f}_1, \ldots, \mathbf{f}_n$ } of orthonormal eigenvectors for *A* is called a set of **principal axes** for the quadratic form *q*. (The reason for the name will become clear later.) The orthogonal matrix *P* in Theorem 8.9.1 is given as $P = \begin{bmatrix} \mathbf{f}_1 & \cdots & \mathbf{f}_n \end{bmatrix}$, so the variables *X* and *Y* are related by

$$\mathbf{x} = P\mathbf{y} = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \cdots & \mathbf{f}_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = y_1\mathbf{f}_1 + y_2\mathbf{f}_2 + \cdots + y_n\mathbf{f}_n$$

Thus the new variables y_i are the coefficients when **x** is expanded in terms of the orthonormal basis $\{\mathbf{f}_1, \ldots, \mathbf{f}_n\}$ of \mathbb{R}^n . In particular, the coefficients y_i are given by $y_i = \mathbf{x} \cdot \mathbf{f}_i$ by the expansion theorem (Theorem 5.3.6). Hence *q* itself is easily computed from the eigenvalues λ_i and the principal axes \mathbf{f}_i :

$$q = q(\mathbf{x}) = \lambda_1 (\mathbf{x} \cdot \mathbf{f}_1)^2 + \dots + \lambda_n (\mathbf{x} \cdot \mathbf{f}_n)^2$$

Example 8.9.2

Find new variables y_1 , y_2 , y_3 , and y_4 such that

$$q = 3(x_1^2 + x_2^2 + x_3^2 + x_4^2) + 2x_1x_2 - 10x_1x_3 + 10x_1x_4 + 10x_2x_3 - 10x_2x_4 + 2x_3x_4$$

has diagonal form, and find the corresponding principal axes.

Solution. The form can be written as $q = \mathbf{x}^T A \mathbf{x}$, where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } A = \begin{bmatrix} 3 & 1 & -5 & 5 \\ 1 & 3 & 5 & -5 \\ -5 & 5 & 3 & 1 \\ 5 & -5 & 1 & 3 \end{bmatrix}$$

A routine calculation yields

$$c_A(x) = \det(xI - A) = (x - 12)(x + 8)(x - 4)^2$$

so the eigenvalues are $\lambda_1 = 12$, $\lambda_2 = -8$, and $\lambda_3 = \lambda_4 = 4$. Corresponding orthonormal

eigenvectors are the principal axes:

$$\mathbf{f}_{1} = \frac{1}{2} \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix} \quad \mathbf{f}_{2} = \frac{1}{2} \begin{bmatrix} 1\\ -1\\ 1\\ -1 \\ -1 \end{bmatrix} \quad \mathbf{f}_{3} = \frac{1}{2} \begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix} \quad \mathbf{f}_{4} = \frac{1}{2} \begin{bmatrix} 1\\ 1\\ -1\\ -1\\ -1 \end{bmatrix}$$

The matrix

$$P = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 & \mathbf{f}_3 & \mathbf{f}_4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

is thus orthogonal, and $P^{-1}AP = P^{T}AP$ is diagonal. Hence the new variables y and the old variables **x** are related by $\mathbf{y} = P^T \mathbf{x}$ and $\mathbf{x} = P \mathbf{y}$. Explicitly,

$y_1 = \frac{1}{2}(x_1 - x_2 - x_3 + x_4)$	$x_1 = \frac{1}{2}(y_1 + y_2 + y_3 + y_4)$
$y_2 = \frac{1}{2}(x_1 - x_2 + x_3 - x_4)$	$x_2 = \frac{1}{2}(-y_1 - y_2 + y_3 + y_4)$
$y_3 = \frac{1}{2}(x_1 + x_2 + x_3 + x_4)$	$x_3 = \frac{1}{2}(-y_1 + y_2 + y_3 - y_4)$
$y_4 = \frac{1}{2}(x_1 + x_2 - x_3 - x_4)$	$x_4 = \frac{1}{2}(y_1 - y_2 + y_3 - y_4)$

If these x_i are substituted in the original expression for q, the result is

$$q = 12y_1^2 - 8y_2^2 + 4y_3^2 + 4y_4^2$$

This is the required diagonal form.

It is instructive to look at the case of quadratic forms in two variables x_1 and x_2 . Then the principal axes can always be found by rotating the x_1 and x_2 axes counterclockwise about the origin through an angle θ . This rotation is a linear transformation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$, and it is shown in Theorem 2.6.4 that R_{θ} has matrix $P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. If $\{\mathbf{e}_1, \mathbf{e}_2\}$ denotes the standard basis of \mathbb{R}^2 , the rotation produces a new basis { \mathbf{f}_1 , \mathbf{f}_2 } given by

$$\mathbf{f}_1 = R_{\theta}(\mathbf{e}_1) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \quad \text{and} \quad \mathbf{f}_2 = R_{\theta}(\mathbf{e}_2) = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$
(8.7)

Given a point $\mathbf{p} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$ in the original system, let y_1 and y_2 be the coordinates of \mathbf{p} in the new system (see the diagram). That is,

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{p} = y_1 \mathbf{f}_1 + y_2 \mathbf{f}_2 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
(8.8)

Writing $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, this reads $\mathbf{x} = P\mathbf{y}$ so, since *P* is or-

thogonal, this is the change of variables formula for the rotation as in Theorem 8.9.1.

If $r \neq 0 \neq s$, the graph of the equation $rx_1^2 + sx_2^2 = 1$ is called an **ellipse** if rs > 0 and a **hyperbola** if rs < 0. More generally, given a quadratic form

$$q = ax_1^2 + bx_1x_2 + cx_2^2$$
 where not all of a, b, and c are zero

the graph of the equation q = 1 is called a **conic**. We can now completely describe this graph. There are two special cases which we leave to the reader.

1. If exactly one of a and c is zero, then the graph of q = 1 is a **parabola**.

So we assume that $a \neq 0$ and $c \neq 0$. In this case, the description depends on the quantity $b^2 - 4ac$, called the **discriminant** of the quadratic form *q*.

2. If $b^2 - 4ac = 0$, then either both $a \ge 0$ and $c \ge 0$, or both $a \le 0$ and $c \le 0$. Hence $q = (\sqrt{ax_1} + \sqrt{cx_2})^2$ or $q = (\sqrt{-ax_1} + \sqrt{-cx_2})^2$, so the graph of q = 1 is a **pair of straight lines** in either case.

So we also assume that $b^2 - 4ac \neq 0$. But then the next theorem asserts that there exists a rotation of the plane about the origin which transforms the equation $ax_1^2 + bx_1x_2 + cx_2^2 = 1$ into either an ellipse or a hyperbola, and the theorem also provides a simple way to decide which conic it is.

Theorem 8.9.2

Consider the quadratic form $q = ax_1^2 + bx_1x_2 + cx_2^2$ where a, c, and $b^2 - 4ac$ are all nonzero.

- 1. There is a counterclockwise rotation of the coordinate axes about the origin such that, in the new coordinate system, *q* has no cross term.
- 2. The graph of the equation

$$ax_1^2 + bx_1x_2 + cx_2^2 = 1$$

is an ellipse if $b^2 - 4ac < 0$ and an hyperbola if $b^2 - 4ac > 0$.

Proof. If b = 0, *q* already has no cross term and (1) and (2) are clear. So assume $b \neq 0$. The matrix $A = \begin{bmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{bmatrix}$ of *q* has characteristic polynomial $c_A(x) = x^2 - (a+c)x - \frac{1}{4}(b^2 - 4ac)$. If we write $d = \sqrt{b^2 + (a-c)^2}$ for convenience; then the quadratic formula gives the eigenvalues

$$\lambda_1 = \frac{1}{2}[a+c-d]$$
 and $\lambda_2 = \frac{1}{2}[a+c+d]$

with corresponding principal axes

$$\mathbf{f}_1 = \frac{1}{\sqrt{b^2 + (a-c-d)^2}} \begin{bmatrix} a-c-d \\ b \end{bmatrix} \quad \text{and}$$
$$\mathbf{f}_2 = \frac{1}{\sqrt{b^2 + (a-c-d)^2}} \begin{bmatrix} -b \\ a-c-d \end{bmatrix}$$

as the reader can verify. These agree with equation (8.7) above if θ is an angle such that

$$\cos \theta = \frac{a-c-d}{\sqrt{b^2 + (a-c-d)^2}}$$
 and $\sin \theta = \frac{b}{\sqrt{b^2 + (a-c-d)^2}}$

Then $P = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_2 \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ diagonalizes *A* and equation (8.8) becomes the formula $\mathbf{x} = P\mathbf{y}$ in Theorem 8.9.1. This proves (1).

Finally, *A* is similar to $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ so $\lambda_1 \lambda_2 = \det A = \frac{1}{4}(4ac - b^2)$. Hence the graph of $\lambda_1 y_1^2 + \lambda_2 y_2^2 = 1$ is an ellipse if $b^2 < 4ac$ and an hyperbola if $b^2 > 4ac$. This proves (2).

Example 8.9.3

Consider the equation $x^2 + xy + y^2 = 1$. Find a rotation so that the equation has no cross term. Solution.

The determinant of any orthogonal matrix *P* is either 1 or -1 (because $PP^T = I$). The orthogonal matrices $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ arising from rotations all have determinant 1. More generally, given any quadratic form $q = \mathbf{x}^T A \mathbf{x}$, the orthogonal matrix *P* such that $P^T A P$ is diagonal can always be chosen so that det P = 1 by interchanging two eigenvalues (and hence the corresponding columns of *P*). It is shown in Theorem 10.4.4 that orthogonal 2×2 matrices with determinant 1 correspond to rotations. Similarly, it can be shown that orthogonal 3×3 matrices with determinant 1 correspond to rotations about a line through the origin. This extends Theorem 8.9.2: Every quadratic form in two or three variables can be diagonalized by a rotation of the coordinate system.

Congruence

We return to the study of quadratic forms in general.

Theorem 8.9.3

If $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is a quadratic form given by a symmetric matrix *A*, then *A* is uniquely determined by *q*.

<u>Proof.</u> Let $q(\mathbf{x}) = \mathbf{x}^T B \mathbf{x}$ for all \mathbf{x} where $B^T = B$. If C = A - B, then $C^T = C$ and $\mathbf{x}^T C \mathbf{x} = 0$ for all \mathbf{x} . We must show that C = 0. Given \mathbf{y} in \mathbb{R}^n ,

$$0 = (\mathbf{x} + \mathbf{y})^T C(\mathbf{x} + \mathbf{y}) = \mathbf{x}^T C \mathbf{x} + \mathbf{x}^T C \mathbf{y} + \mathbf{y}^T C \mathbf{x} + \mathbf{y}^T C \mathbf{y}$$
$$= \mathbf{x}^T C \mathbf{y} + \mathbf{y}^T C \mathbf{x}$$

But $\mathbf{y}^T C \mathbf{x} = (\mathbf{x}^T C \mathbf{y})^T = \mathbf{x}^T C \mathbf{y}$ (it is 1×1). Hence $\mathbf{x}^T C \mathbf{y} = 0$ for all \mathbf{x} and \mathbf{y} in \mathbb{R}^n . If \mathbf{e}_j is column j of I_n , then the (i, j)-entry of C is $\mathbf{e}_i^T C \mathbf{e}_j = 0$. Thus C = 0.

Hence we can speak of *the* symmetric matrix of a quadratic form.

On the other hand, a quadratic form q in variables x_i can be written in several ways as a linear combination of squares of new variables, even if the new variables are required to be linear combinations of the x_i . For example, if $q = 2x_1^2 - 4x_1x_2 + x_2^2$ then

$$q = 2(x_1 - x_2)^2 - x_2^2$$
 and $q = -2x_1^2 + (2x_1 - x_2)^2$

The question arises: How are these changes of variables related, and what properties do they share? To investigate this, we need a new concept.

Let a quadratic form $q = q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be given in terms of variables $\mathbf{x} = (x_1, x_2, ..., x_n)^T$. If the new variables $\mathbf{y} = (y_1, y_2, ..., y_n)^T$ are to be linear combinations of the x_i , then $\mathbf{y} = A \mathbf{x}$ for some $n \times n$ matrix *A*. Moreover, since we want to be able to solve for the x_i in terms of the y_i , we ask that the matrix *A* be invertible. Hence suppose *U* is an invertible matrix and that the new variables \mathbf{y} are given by

 $\mathbf{y} = U^{-1}\mathbf{x}$, equivalently $\mathbf{x} = U\mathbf{y}$

In terms of these new variables, q takes the form

$$q = q(\mathbf{x}) = (U\mathbf{y})^T A(U\mathbf{y}) = \mathbf{y}^T (U^T A U) \mathbf{y}$$

That is, *q* has matrix $U^T A U$ with respect to the new variables **y**. Hence, to study changes of variables in quadratic forms, we study the following relationship on matrices: Two $n \times n$ matrices *A* and *B* are called **congruent**, written $A \stackrel{c}{\sim} B$, if $B = U^T A U$ for some invertible matrix *U*. Here are some properties of congruence:

- 1. $A \stackrel{c}{\sim} A$ for all A.
- 2. If $A \stackrel{c}{\sim} B$, then $B \stackrel{c}{\sim} A$.

- 3. If $A \stackrel{c}{\sim} B$ and $B \stackrel{c}{\sim} C$, then $A \stackrel{c}{\sim} C$.
- 4. If $A \stackrel{c}{\sim} B$, then A is symmetric if and only if B is symmetric.
- 5. If $A \stackrel{c}{\sim} B$, then rank $A = \operatorname{rank} B$.

The converse to (5) can fail even for symmetric matrices.

Example 8.9.4 The symmetric matrices $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ have the same rank but are not congruent. Indeed, if $A \stackrel{c}{\sim} B$, an invertible matrix U exists such that $B = U^T A U = U^T U$. But then $-1 = \det B = (\det U)^2$, a contradiction.

The key distinction between *A* and *B* in Example 8.9.4 is that *A* has two positive eigenvalues (counting multiplicities) whereas *B* has only one.

Theorem 8.9.4: Sylvester's Law of Inertia

If $A \sim^{c} B$, then A and B have the same number of positive eigenvalues, counting multiplicities.

The proof is given at the end of this section.

The **index** of a symmetric matrix A is the number of positive eigenvalues of A. If $q = q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is a quadratic form, the **index** and **rank** of q are defined to be, respectively, the index and rank of the matrix A. As we saw before, if the variables expressing a quadratic form q are changed, the new matrix is congruent to the old one. Hence the index and rank depend only on q and not on the way it is expressed.

Now let $q = q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be any quadratic form in *n* variables, of index *k* and rank *r*, where *A* is symmetric. We claim that new variables \mathbf{z} can be found so that *q* is **completely diagonalized**—that is,

$$q(\mathbf{z}) = z_1^2 + \dots + z_k^2 - z_{k+1}^2 - \dots - z_r^2$$

If $k \le r \le n$, let $D_n(k, r)$ denote the $n \times n$ diagonal matrix whose main diagonal consists of k ones, followed by r - k minus ones, followed by n - r zeros. Then we seek new variables z such that

$$q(\mathbf{z}) = \mathbf{z}^T D_n(k, r) \mathbf{z}$$

To determine \mathbf{z} , first diagonalize A as follows: Find an orthogonal matrix P_0 such that

$$P_0^T A P_0 = D = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_r, 0, \dots, 0)$$

is diagonal with the nonzero eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$ of *A* on the main diagonal (followed by n - r zeros). By reordering the columns of P_0 , if necessary, we may assume that $\lambda_1, \ldots, \lambda_k$ are positive and $\lambda_{k+1}, \ldots, \lambda_r$ are negative. This being the case, let D_0 be the $n \times n$ diagonal matrix

$$D_0 = \operatorname{diag}\left(\frac{1}{\sqrt{\lambda_1}}, \ldots, \frac{1}{\sqrt{\lambda_k}}, \frac{1}{\sqrt{-\lambda_{k+1}}}, \ldots, \frac{1}{\sqrt{-\lambda_r}}, 1, \ldots, 1\right)$$

Then $D_0^T D D_0 = D_n(k, r)$, so if new variables **z** are given by $\mathbf{x} = (P_0 D_0)\mathbf{z}$, we obtain

$$q(\mathbf{z}) = \mathbf{z}^T D_n(k, r) \mathbf{z} = z_1^2 + \dots + z_k^2 - z_{k+1}^2 - \dots - z_r^2$$

as required. Note that the change-of-variables matrix P_0D_0 from z to x has orthogonal columns (in fact, scalar multiples of the columns of P_0).

Example 8.9.5

Completely diagonalize the quadratic form q in Example 8.9.2 and find the index and rank.

<u>Solution</u>. In the notation of Example 8.9.2, the eigenvalues of the matrix *A* of *q* are 12, -8, 4, 4; so the index is 3 and the rank is 4. Moreover, the corresponding orthogonal eigenvectors are \mathbf{f}_1 , \mathbf{f}_2 , \mathbf{f}_3 (see Example 8.9.2), and \mathbf{f}_4 . Hence $P_0 = \begin{bmatrix} \mathbf{f}_1 & \mathbf{f}_3 & \mathbf{f}_4 & \mathbf{f}_2 \end{bmatrix}$ is orthogonal and

$$P_0^T A P_0 = \text{diag}(12, 4, 4, -8)$$

As before, take $D_0 = \text{diag}\left(\frac{1}{\sqrt{12}}, \frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{8}}\right)$ and define the new variables \mathbf{z} by $\mathbf{x} = (P_0 D_0)\mathbf{z}$. Hence the new variables are given by $\mathbf{z} = D_0^{-1} P_0^T \mathbf{x}$. The result is

$$z_1 = \sqrt{3}(x_1 - x_2 - x_3 + x_4)$$

$$z_2 = x_1 + x_2 + x_3 + x_4$$

$$z_3 = x_1 + x_2 - x_3 - x_4$$

$$z_4 = \sqrt{2}(x_1 - x_2 + x_3 - x_4)$$

This discussion gives the following information about symmetric matrices.

Theorem 8.9.5

Let *A* and *B* be symmetric $n \times n$ matrices, and let $0 \le k \le r \le n$.

- 1. A has index k and rank r if and only if $A \stackrel{c}{\sim} D_n(k, r)$.
- 2. $A \stackrel{c}{\sim} B$ if and only if they have the same rank and index.

Proof.

- 1. If A has index k and rank r, take $U = P_0 D_0$ where P_0 and D_0 are as described prior to Example 8.9.5. Then $U^T A U = D_n(k, r)$. The converse is true because $D_n(k, r)$ has index k and rank r (using Theorem 8.9.4).
- 2. If A and B both have index k and rank r, then $A \stackrel{c}{\sim} D_n(k, r) \stackrel{c}{\sim} B$ by (1). The converse was given earlier.

Proof of Theorem 8.9.4.

By Theorem 8.9.1, $A \sim D_1$ and $B \sim D_2$ where D_1 and D_2 are diagonal and have the same eigenvalues as A and B, respectively. We have $D_1 \sim D_2$, (because $A \sim B$), so we may assume that A and B are both diagonal. Consider the quadratic form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. If A has k positive eigenvalues, q has the form

$$q(\mathbf{x}) = a_1 x_1^2 + \dots + a_k x_k^2 - a_{k+1} x_{k+1}^2 - \dots - a_r x_r^2, \quad a_i > 0$$

where $r = \operatorname{rank} A = \operatorname{rank} B$. The subspace $W_1 = \{\mathbf{x} \mid x_{k+1} = \cdots = x_r = 0\}$ of \mathbb{R}^n has dimension n - r + k and satisfies $q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$ in W_1 .

On the other hand, if $B = U^T A U$, define new variables **y** by $\mathbf{x} = U \mathbf{y}$. If *B* has k' positive eigenvalues, *q* has the form

$$q(\mathbf{x}) = b_1 y_1^2 + \dots + b_{k'} y_{k'}^2 - b_{k'+1} y_{k'+1}^2 - \dots - b_r y_r^2, \quad b_i > 0$$

Let $\mathbf{f}_1, \ldots, \mathbf{f}_n$ denote the columns of U. They are a basis of \mathbb{R}^n and

$$\mathbf{x} = U\mathbf{y} = \begin{bmatrix} \mathbf{f}_1 & \cdots & \mathbf{f}_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = y_1\mathbf{f}_1 + \cdots + y_n\mathbf{f}_n$$

Hence the subspace $W_2 = \text{span} \{ \mathbf{f}_{k'+1}, \dots, \mathbf{f}_r \}$ satisfies $q(\mathbf{x}) < 0$ for all $\mathbf{x} \neq \mathbf{0}$ in W_2 . Note dim $W_2 = r - k'$. It follows that W_1 and W_2 have only the zero vector in common. Hence, if B_1 and B_2 are bases of W_1 and W_2 , respectively, then (Exercise 6.3.33) $B_1 \cup B_2$ is an independent set of (n - r + k) + (r - k') = n + k - k' vectors in \mathbb{R}^n . This implies that $k \leq k'$, and a similar argument shows $k' \leq k$.

Exercises for 8.9

Exercise 8.9.1 In each case, find a symmetric matrix *A* such that $q = \mathbf{x}^T B \mathbf{x}$ takes the form $q = \mathbf{x}^T A \mathbf{x}$.

a.	$\left[\begin{array}{rrr}1 & 1\\0 & 1\end{array}\right]$	b. $\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$
c.	$\left[\begin{array}{rrrr}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right]$	d. $\begin{bmatrix} 1 & 2 & -1 \\ 4 & 1 & 0 \\ 5 & -2 & 3 \end{bmatrix}$

Exercise 8.9.2 In each case, find a change of variables that will diagonalize the quadratic form q. Determine the index and rank of q.

a.
$$q = x_1^2 + 2x_1x_2 + x_2^2$$

b. $q = x_1^2 + 4x_1x_2 + x_2^2$
c. $q = x_1^2 + x_2^2 + x_3^2 - 4(x_1x_2 + x_1x_3 + x_2x_3)$

d.
$$q = 7x_1^2 + x_2^2 + x_3^2 + 8x_1x_2 + 8x_1x_3 - 16x_2x_3$$

e. $q = 2(x_1^2 + x_2^2 + x_3^2 - x_1x_2 + x_1x_3 - x_2x_3)$
f. $q = 5x_1^2 + 8x_2^2 + 5x_3^2 - 4(x_1x_2 + 2x_1x_3 + x_2x_3)$
g. $q = x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3$
h. $q = x_1^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$

Exercise 8.9.3 For each of the following, write the equation in terms of new variables so that it is in standard position, and identify the curve.

a. xy = 1b. $3x^2 - 4xy = 2$ c. $6x^2 + 6xy - 2y^2 = 5$ d. $2x^2 + 4xy + 5y^2 = 1$ **Exercise 8.9.4** Consider the equation $ax^2 + bxy + cy^2 = d$, where $b \neq 0$. Introduce new variables x_1 and y_1 by rotating the axes counterclockwise through an angle θ . Show that the resulting equation has no x_1y_1 -term if θ is given by

$$\cos 2\theta = \frac{a-c}{\sqrt{b^2 + (a-c)^2}}$$
$$\sin 2\theta = \frac{b}{\sqrt{b^2 + (a-c)^2}}$$

[*Hint*: Use equation (8.8) preceding Theorem 8.9.2 to get x and y in terms of x_1 and y_1 , and substitute.]

Exercise 8.9.5 Prove properties (1)–(5) preceding Example 8.9.4.

Exercise 8.9.6 If $A \stackrel{c}{\sim} B$ show that A is invertible if and only if B is invertible.

Exercise 8.9.7 If $\mathbf{x} = (x_1, ..., x_n)^T$ is a column of variables, $A = A^T$ is $n \times n$, *B* is $1 \times n$, and *c* is a constant, $\mathbf{x}^T A \mathbf{x} + B \mathbf{x} = c$ is called a **quadratic equation** in the variables x_i .

a. Show that new variables y_1, \ldots, y_n can be found such that the equation takes the form

$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 + k_1 y_1 + \dots + k_n y_n = c$$

b. Put $x_1^2 + 3x_2^2 + 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 5x_1 - 6x_3 = 7$ in this form and find variables y_1, y_2, y_3 as in (a). **Exercise 8.9.8** Given a symmetric matrix *A*, define $q_A(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$. Show that $B \sim^c A$ if and only if *B* is symmetric and there is an invertible matrix *U* such that $q_B(\mathbf{x}) = q_A(U\mathbf{x})$ for all \mathbf{x} . [*Hint*: Theorem 8.9.3.]

Exercise 8.9.9 Let $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ be a quadratic form where $A = A^T$.

- a. Show that $q(\mathbf{x}) > 0$ for all $\mathbf{x} \neq \mathbf{0}$, if and only if *A* is positive definite (all eigenvalues are positive). In this case, *q* is called **positive definite**.
- b. Show that new variables \mathbf{y} can be found such that $q = \|\mathbf{y}\|^2$ and $\mathbf{y} = U\mathbf{x}$ where U is upper triangular with positive diagonal entries. [*Hint*: Theorem 8.3.3.]

Exercise 8.9.10 A bilinear form β on \mathbb{R}^n is a function that assigns to every pair **x**, **y** of columns in \mathbb{R}^n a number $\beta(\mathbf{x}, \mathbf{y})$ in such a way that

$$\beta(r\mathbf{x} + s\mathbf{y}, \mathbf{z}) = r\beta(\mathbf{x}, \mathbf{z}) + s\beta(\mathbf{y}, \mathbf{z})$$
$$\beta(\mathbf{x}, r\mathbf{y} + s\mathbf{z}) = r\beta(\mathbf{x}, \mathbf{z}) + s\beta(\mathbf{x}, \mathbf{z})$$

for all $\mathbf{x}, \mathbf{y}, \mathbf{z}$ in \mathbb{R}^n and r, s in \mathbb{R} . If $\beta(\mathbf{x}, \mathbf{y}) = \beta(\mathbf{y}, \mathbf{x})$ for all $\mathbf{x}, \mathbf{y}, \beta$ is called **symmetric**.

- a. If β is a bilinear form, show that an $n \times n$ matrix A exists such that $\beta(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T A \mathbf{y}$ for all \mathbf{x}, \mathbf{y} .
- b. Show that A is uniquely determined by β .
- c. Show that β is symmetric if and only if $A = A^T$.

8.10 An Application to Constrained Optimization

It is a frequent occurrence in applications that a function $q = q(x_1, x_2, ..., x_n)$ of *n* variables, called an **objective function**, is to be made as large or as small as possible among all vectors $\mathbf{x} = (x_1, x_2, ..., x_n)$ lying in a certain region of \mathbb{R}^n called the **feasible region**. A wide variety of objective functions *q* arise in practice; our primary concern here is to examine one important situation where *q* is a quadratic form. The next example gives some indication of how such problems arise.